EE 435

Lecture 31

String DACs

Performance Characterization of Data Converters

Static Characteristics

Dynamic Characteristics

Have spent several lectures discussing Static Characteristics

Dynamic Characteristics are also important but due to time limitations will not be discussed in detail in this course

Performance Characterization of Data Converters

- Static characteristics
 - Resolution
 - Least Significant Bit (LSB)
 - Offset and Gain Errors
 - Absolute Accuracy
 - Relative Accuracy
 - Integral Nonlinearity (INL)
 - Differential Nonlinearity (DNL)
 - Monotonicity (DAC)
 - Missing Codes (ADC)
 - Low-f Spurious Free Dynamic Range (SFDR)
 - Low-f Total Harmonic Distortion (THD)
 - Effective Number of Bits (ENOB)
 - Power Dissipation

Performance Characterization of Data Converters

- Dynamic characteristics
 - Conversion Time or Conversion Rate (ADC)
 - Settling time or Clock Rate (DAC)
 - Sampling Time Uncertainty (aperture uncertainty or aperture jitter)
 - Dynamic Range
 - Spurious Free Dynamic Range (SFDR)
 - Total Harmonic Distortion (THD)
 - Signal to Noise Ratio (SNR)
 - Signal to Noise and Distortion Ratio (SNDR)
 - Sparkle Characteristics
 - Effective Number of Bits (ENOB)
- Spectral analysis using higher-frequency inputs used to characterize dynamic linearity (INL not defined)
- Invariably THD, SFDR, SNDR degrade with input frequency
- Effects of device noise due to random movement of electronics and parasitic device capacitances inherently the major factor limiting dynamic performance (clever design can drive non-noise undesired effects to arbitrarily low levels)
- Analytical modeling of dynamic linearity effects is challenging (nonlinear differential equations characterize the dynamic linearity effects)

DAC Architectures (Nyquist Rate)

Types

- Voltage Scaling
 - Resistor String DACs (string DACs)
 - Interpolating
- Current Steering
 - Binarily Weighted Resistors
 - R-2R Ladders
 - Current Source Steering
 - Thermometer Coded
 - Binary Weighted
 - Segmented
- Charge Redistribution
 - Switched Capacitor
- Serial
 - Algorithmic
 - Cyclic or Re-circulating
 - Pipelined
- Integrating
- Resistor Switching
- MDACs (multiplying DACs)

DAC Architectures

Structures

- Hybrid or Segmented
- Mode of Operation
 - Current Mode
 - Voltage Mode
 - Charge Mode
- Self-Calibrating
 - Analog Calibration
 - Foreground
 - Background
 - Digital Calibration
 - Foreground
 - Background
 - Dynamic Element Matching
- Laser of Link Trimmed
- Thermometer Coded or Binary
- Radix 2 or non-radix 2
- Inherently Monotone

DAC Architectures

- Type of Classification may not be unique nor mutually exclusive
- Structure is not mutually exclusive
- All approaches listed are used (and probably some others as well)
- Some are much more popular than others
 - Popular Architectures
 - Resistor String (interpolating)
 - Current Source Steering (with segmentation)
- Many new architectures are possible and some may be much better than the best currently available
- All have perfect performance if parasitic and matching performance are ignored !
- Major challenge is in determining appropriate architecture and managing the parasitics

Nonideal Effects of Concern

- Matching
- Parasitic Capacitances (including Charge injection)
- Loading
- Nonlinearities
- Previous code dependence
- Code-dependent settling
- Interconnect resistors
- Noise
- Slow and plagued by jitter
- Temperature Effects
- Aging
- Package stress

Observations

- Yield Loss is the major penalty for not appropriately managing parasitics and matching and this loss can be ruthless
- The ultimate performance limit of essentially all DACs is the yield loss associated with parasitics and matching
- Many designers do not have or use good statistical models that accurately predict data converter performance
- If you work of a company that does not have good statistical device models
 - Convince model groups of the importantc of dedveloping these models
 - (or) develop appropriate test strutures to characterize your process
- Existing nonlinear device models may not sufficiently accurately predict device nonlinearities for high-end data converter applications

Observations

- Experienced Designers/Companies often produce superior data converter products
- Essentially all companies have access to the same literature, regularly reverse engineer successful competitors products and key benefits in successful competitors products are generally not locked up in patents
- High-end designs(speed and resolution) may get attention in the peer community but practical moderate performance converters usually make the cash flow
- Area (from a silicon cost viewpoint) is usually not the driving factor in high-end designs where attractive price/mfg cost ratios prevail

Data Converter Design Strategies

- There are many different DAC and ADC architectures that have been proposed and that are in widespread use today
- Almost all work perfectly if all components are ideal
- Most data converter design work involves identifying the contributors to nonideal performance and finding work-arounds to these problems
- Some architectures are more difficult to find work-arounds than others
- All contributors to nonidealities that are problematic at a given resolution of speed level must be identified and mitigated
- The nonidealities generally fall into one of two categories
 - Matching-critical nonidealities (degrade yield)
 - Component nonidealities (degrade performance even if desired matching is present)

Data Converter Design Strategies

Remember:

Need to keep nonideal effects below an acceptable performance threshold

Identifying Problems/Challenges and Clever/Viable Solutions

- Many problems occur repeatedly so should recognize when they occur
- Identify clever solutions to basic problems they often are useful in many applications
- Don't make the same mistake twice !

robiem.

The perceived solution:

The practical or clever solution:

Basic R-String DAC

Basic R-String DAC including Logic to Control Switches

If all components are ideal, performance of the R-string DAC is that of an ideal DAC!

Key Properties of R-String DAC

- One of the simplest DAC architectures
- R-string DAC is inherently monotone

Possible Limitations or Challenges

If all components are ideal, performance of the R-string DAC is that of an ideal DAC!

Key Properties of R-String DAC

- One of the simplest DAC architectures
- R-string DAC is inherently monotone

Possible Limitations or Challenges

- Binary to Thermometer Decoder (BTTD) gets large for n large
- Logic delays in BTTD may degrade performance
- Matching of the resistors may not be perfect
 - Local random variations
 - Gradient effects
- How can switches be made ?
- Lots of capacitance on output node

Typical strategy for implementing the switch

•Switch array is an analog MUX

Very simple structure

•Switch array combined with the BTTD forms a 2ⁿ:1 analog MUX

R-String DAC with MOS switches

Possible Limitations:

R-String DAC with MOS switches

Possible Limitations:

Switch impedance is not 0

Switch may not even turn on at all if \mathbf{V}_{REF} is large

Switch impedance is input-code dependent

Time constants are input-code dependent

Transition times are previous-code dependent

 C_L has 2ⁿ diffusion capacitances so can get very large (will discuss this issue next)
Mismatch of resistors local random variation gradient effects

Decoder can get very large for n large

Routing of the 2ⁿ switch signals can become very long and consume lots of area

Basic R-String DAC

MUX decoder is comprised of analog AND gates Logic Synthesis not used to form MUX (Review from: EE 330)

Parasitic Capacitors in MOSFET

(initially assume saturation and consider two: Gate-channel and diffusion)

Recall that pn junctions have a depletion region!

pn junction capacitance

The bottom and the sidewall:

pn junction capacitance

For a pn junction capacitor

(initially assume saturation and consider two: Gate-channel and diffusion)

- Diffusion capacitances nonlinear (dependent upon voltage)
- Many more actually present
- Operating region may affect parasitics

Question

• Are the parasitic capacitors relevant?

Observation

Parasitic Capacitors are Small

Consider a minimum-sized transistor

Process Parameters from ON 0.5u Process

PROCESS PARAMETE	RS	N+ACTV	P+ACTV	POLY	PLY2_	HR POLY2	MTL1	MTL2	UNITS	
Sheet Resistance		81.5	101.9	21.6	1120	41	0.09	0.09	ohms/sq	
Contact Resistance		64.6	141.9	15.8		26.8		0.8	ohms	
Gate Oxide Thickness		140							angstrom	
PROCESS PARAMETE	RS	MTL 3	N\PLY	N WELL						
Sheet Resistance		0.06	822	812					ohms/sq	
Contact Resistance		0.65							ohms	
COMMENTS: N\POLY	is N-well under polv	silicon.								
CAPACITANCE PARAM	METERS	N+ACTV	P+ACTV	POLY	POLY2	M1	M2	M3	N_WELL	UNITS
Area (substrate)		424	731	07		32	16	10	39	aF/um^2
Area (N+active)				2473		36	16	12		aF/um^2
Area (P+active)				2382						aF/um^2
Area (poly)					969	56	15	10		aF/um^2
Area (poly2)						50				aF/um^2
Area (metal1)							31	13		aF/um^2
Area (metal2)								39		aF/um^2
Fringe (substrate)		315	247			72	58	38		aF/um
Fringe (poly)						57	39	28		aF/um
Fringe (metal1)							48	34		aF/um
Fringe (metal2)								55		aF/um
ringe (metale)				195						aF/um
Overlap (N+active)										

Gate-Channel Capacitance = $6\lambda^2 \ge 2.47 \text{ fF}/\mu^2 = 1.33 \text{ fF}$

Source Diffusion-Substrate Capacitance = $12\lambda^2 \times .424 \text{fF}/\mu^2 + 14\lambda \times .315 \text{fF}/\mu =$.46 fF + 1.32 fF = 1.78 fF

Note Sidewall Capacitance larger than Bottom Capacitance

Are these negligible?

Are these negligible?

These small capacitors play the dominant role in the speed limitations of most digital circuits

These small capacitors play a major role in the performance of many linear circuits

It is essential that these capacitors (parasitic capacitors) be considered and managed when designing most integrated circuits today!

Types of Capacitors

- 1. Fixed Capacitors
 - a. Fixed Geometry
 - b. Junction
- 2. Operating Region Dependent
 - a. Fixed Geometry
 - b. Junction

Parasitic Capacitors in MOSFET Fixed Capacitors

Parasitic Capacitors in MOSFET Fixed Capacitors

Overlap Capacitors: C_{GDO}, C_{GSO}

Fixed Parasitic Capacitance Summary

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D	CoxWL _D	CoxWL _D
	CoxWL _D	CoxWL _D	CoxWL _D

 L_{D} is a model parameter

Parasitic Capacitors in MOSFET Fixed Capacitors

Junction Capacitors: C_{BS1}, C_{BD1}

Parasitic Capacitors in MOSFET Fixed Capacitors

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1} , C_{BD1}

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D	CoxWL _D	CoxWL _D
C _{GD}	CoxWL _D	CoxWL _D	CoxWL _D
C _{BG}			
C _{BS}	$C_{BS1} = C_{BOT}A_S + C_{SW}P_S$	$C_{BS1} = C_{BOT}A_S + C_{SW}P_S$	$C_{BS1} = C_{BOT}A_S + C_{SW}P_S$
C _{BD}	$C_{BD1} = C_{BOT}A_D + C_{SW}P_D$	$C_{BD1} = C_{BOT}A_D + C_{SW}P_D$	$C_{BD1} = C_{BOT}A_D + C_{SW}P_D$

Parasitic Capacitors in MOSFET Operation Region Dependent

Parasitic Capacitors in MOSFET Operation Region Dependent -- Cutoff

Cutoff Capacitor: C_{GBCO}

Parasitic Capacitors in MOSFET Operation Region Dependent -- Cutoff

Cutoff Capacitor: C_{GBCO}

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed -- Cutoff

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1} , C_{BD1} **Cutoff Capacitor:** C_{GBCO}

Parasitic Capacitance Summary

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D		
	CoxWL _D		
C _{BG}	CoxWL (or less)		
C _{BS}	C _{BOT} A _S +C _{SW} P _S		
C _{BD}	C _{BOT} A _D +C _{SW} P _D		

Parasitic Capacitors in MOSFET Operation Region Dependent -- Ohmic

Note: The Channel is not a node in the lumped device model so can not directly include this distributed capacitance in existing models

Note: The distributed channel capacitance is usually lumped and split evenly between the source and drain nodes

Ohmic Capacitor: C_{GCH} , C_{BCH}

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed -- Ohmic

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1} , C_{BD1} **Ohmic Capacitor:** C_{GCH} , C_{BCH}

Parasitic Capacitance Summary

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D	CoxWL _D	
	CoxWL _D	CoxWL _D	
C _{BG}	CoxWL (or less)		
C _{BS}	$C_{BOT}A_S + C_{SW}P_S$	$C_{BS1} = C_{BOT}A_S + C_{SW}P_S$	
C _{BD}	C _{BOT} A _D +C _{SW} P _D	$C_{BD1} = C_{BOT}A_D + C_{SW}P_D$	

Parasitic Capacitors in MOSFET Operation Region Dependent -- Saturation

Note: Since the channel is an extension of the source when in saturation, the distributed capacitors to the channel are generally lumped to the source node

Saturation Capacitors: C_{GCH}, C_{BCH}

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed --Saturation

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1} , C_{BD1} **Saturation Capacitors:** C_{GCH} , C_{BCH}

Parasitic Capacitance Summary

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D	$CoxWL_{D} + 0.5C_{OX}WL$	CoxWL _D +(2/3)C _{OX} WL
	CoxWL _D	$CoxWL_{D} + 0.5C_{OX}WL$	CoxWL _D
C _{BG}	CoxWL (or less)	0	0
C _{BS}	$C_{BOT}A_{S}+C_{SW}P_{S}$	C _{BOT} A _S +C _{SW} P _S +0.5WLC _{BOTCH}	C _{BOT} A _S +C _{SW} P _S +(2/3)WLC _{BOTCH}
	$C_{BOT}A_{D}+C_{SW}P_{D}$	C _{BOT} A _D +C _{SW} P _D +0.5WLC _{BOTCH}	$C_{BOT}A_{D}+C_{SW}P_{D}$

MUX-Decoder Layout/Architecture

Each intersection is a reserved site for a switch

Uncontacted Row-Column Structure

Row-Column Structure with Contacts Added

Programmed entirely with the contact mask

Parasitic Capacitances in MUX Decoder

(for convenience have not shown non-contacted transistor effects)

Previous code-dependent settling introduces distortion !

Previous-Code Dependent Settling

Assume all C's initially with 0V Red denotes V_3 , black denotes 0V, Purple some other voltage

Transition from <010> to <101>

Previous-Code Dependent Settling

Assume all C's initially with 0V

Red denotes V_3 , green denotes V_6 , black denotes 0V, Purple some other voltage

Previous-Code Dependent Settling

Assume all C's initially with 0V

Red denotes V_3 , green denotes V_6 , black denotes 0V, Purple some other voltage

MUX-Decoder in Digital Domain

Single transistor used at each marked intersection to form PTL -NAND gates Do the resistors that form part of PTL dissipate any substantial power? No because only one will be conducting for any DAC output

Stay Safe and Stay Healthy !

End of Lecture 31